Predicting the Secondary Structure of Proteins by Cascading Neural Networks
نویسندگان
چکیده
Protein Secondary Structure Prediction (PSSP) is considered as a challenging task in bioinformatics and so many approaches have been proposed in the literature to solve this problem via achieving more accurate prediction results. Accurate prediction of secondary structure is a critical role in deducing tertiary structure of proteins and their functions. Among the proposed approaches to tackle this problem, Artificial Neural Networks (ANNs) are considered as one of the successful tools that are widely used in this field. Recently, many efforts have been devoted to modify, improve and combine this methodology with other machine learning methods in order to get better results. In this work, we have proposed a two-stage feed forward neural network for prediction of protein secondary structures. To evaluate our approach, it is applied on RS126 dataset and its results are compared with some other NN-based methods.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملNeural Prediction of Buckling Capacity of Stiffened Cylindrical Shells
Estimation of the nonlinear buckling capacity of thin walled shells is one of the most important aspects of structural mechanics. In this study the axial buckling load of 132 stiffened shells were numerically calculated. The applicability of artificial neural networks (ANN) in predicting the buckling capacity of vertically stiffened shells was studied. To this end feed forward (FF) multi-layer ...
متن کاملApplication of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle
In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...
متن کاملPredicting the buckling Capacity of Steel Cylindrical Shells with Rectangular Stringers under Axial Loading by using Artificial Neural Networks
A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis. Radi...
متن کاملEvaluation the efficiency of using Artificial Neural Networks in predicting meteorological droughts in north-west of Iran
Drought is one of the most destructive natural disasters in human societies that cause irreparable impacts on agriculture, environment, society and economics. So, awareness of occurrence of droughts can be effective in reducing losses. In this study, in order to modeling and forecasting drought severity in a 37 year time period (1971-2007) in 21 meteorological stations, located in the cold semi...
متن کامل